68 research outputs found

    PHOREST: a web-based tool for comparative analyses of expressed sequence tag data

    Get PDF
    Comparative analysis of expressed sequence tags is becoming an important tool in molecular ecology for comparing gene expression in organisms grown in certain environments. Additionally, expressed sequence tag database information can be used for the construction of DNA microarrays and for the detection of single nucleotide polymorphisms. For such applications, we present PHOREST, a web-based tool for managing, analysing and comparing various collections of expressed sequence tags. It is written in PHP (PHP: Hypertext Preprocessor) and runs on UNIX, Microsoft Windows and Macintosh (Mac OS X) platforms

    Low genetic diversity among isolates of the nematode-trapping fungus Duddingtonia flagrans: evidence for recent worldwide dispersion from a single common ancestor

    Get PDF
    The genetic variation of Duddingtonia flagrans, which has become a promising biocontrol agent of animal parasitic nematodes, was investigated in a worldwide collection of 22 isolates. We analysed the sequence variation in four nuclear genes, tubA (beta-tubulin), CMD1 (calmodulin), EF1alpha (translation elongation factor 1alpha), and PII (extracellular serine protease). 1428 aligned base pairs (bp) were analysed from the four genes, including 709 bp of introns. In addition, the variations in three anonymous genomic regions comprising 1155 bp were examined. Three single nucleotide polymorphisms (SNPs) were detected in the seven loci, none of them in the protein encoding genes. The genetic variation was significantly higher in the nematode-trapping fungus Arthrobotrys oligospora, the closest evolutionary relative to D. flagrans. Analysis of 12 isolates of A. oligospora revealed 30 SNPs in tub A, CMD1, EF1alpha and PII. The genetic variation in the isolates of D. flagrans was further examined using AFLP analysis. Five primer combinations were used to detect 159 bands, of which 94 (59.1%) were polymorphic. A neighbour-joining tree based on the AFLP data showed no clear association between genotype and geographical origin. Furthermore, the AFLP data suggest that D. flagrans is mainly clonal and no recombination could be detected, not even within the same country. The low genetic variation in D. flagrans suggests that this fungus has recently diverged from a single progenitor. Based on estimations of mutation rates, it was calculated that this most recent common ancestor lived about 16000-23000 years ago

    Is Transcriptional Regulation of Metabolic Pathways an Optimal Strategy for Fitness?

    Get PDF
    Background. Transcriptional regulation of the genes in metabolic pathways is a highly successful strategy, which is virtually universal in microorganisms. The lac operon of E. coli is but one example of how enzyme and transporter production can be made conditional on the presence of a nutrient to catabolize. Methodology. With a minimalist model of metabolism, cell growth and transcriptional regulation in a microorganism, we explore how the interaction between environmental conditions and gene regulation set the growth rate of cells in the phase of exponential growth. This in silico model, which is based on biochemical rate equations, does not describe a specific organism, but the magnitudes of its parameters are chosen to match realistic values. Optimizing the parameters of the regulatory system allows us to quantify the fitness benefit of regulation. When a second nutrient and its metabolic pathway are introduced, the system must further decide whether and how to activate both pathways. Conclusions. Even the crudest transcriptional network is shown to substantially increase the fitness of the organism, and this effect persists even when the range of nutrient levels is kept very narrow. We show that maximal growth is achieved when pathway activation is a more or less steeply graded function of the nutrient concentration. Furthermore, we predict that bistability of the system is a rare phenomenon in this context, but outline a situation where it may be selected for

    Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi

    Get PDF
    Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes

    Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

    Get PDF
    The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing

    Repeated genomic signatures of adaptation to urbanisation in a songbird across Europe

    Get PDF
    Urbanisation is currently increasing worldwide, and there is now ample evidence of phenotypic changes in wild organisms in response to this novel environment, but the extent to which this adaptation is due to genetic changes is poorly understood. Current evidence for evolution is based on localised studies, and thus lacking replicability. Here, we genotyped great tits (Parus major) from nine cities across Europe, each paired with a rural site, and provide evidence of repeated polygenic responses to urban habitats. In addition, we show that selective sweeps occurred in response to urbanisation within the same genes across multiple cities. These genetic responses were mostly associated with genes related to neural function and development, demonstrating that genetic adaptation to urbanisation occurred around the same pathways in wildlife populations across a large geographical scale.Competing Interest StatementThe authors have declared no competing interest

    Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe

    Get PDF
    Urbanisation is increasing worldwide, and there is now ample evidence of phenotypic changes in wild organisms in response to this novel environment. Yet, the genetic changes and genomic architecture underlying these adaptations are poorly understood. Here, we genotype 192 great tits (Parus major) from nine European cities, each paired with an adjacent rural site, to address this major knowledge gap in our understanding of wildlife urban adaptation. We find that a combination of polygenic allele frequency shifts and recurrent selective sweeps are associated with the adaptation of great tits to urban environments. While haplotypes under selection are rarely shared across urban populations, selective sweeps occur within the same genes, mostly linked to neural function and development. Collectively, we show that urban adaptation in a widespread songbird occurs through unique and shared selective sweeps in a core-set of behaviour-linked genes

    Genomic Diversity and Evolution of Parasitism in Nematode-trapping Fungi

    No full text
    Nematode-trapping fungi are soil-living organisms that have the ability to form infection structures, traps to capture nematodes. Many nematode species are parasites on plants and animals, which have resulted in an interest to use the nematode-trapping fungi as biological control agents. In order to understand more about the genomic diversity and evolution of parasitism among these fungi, several studies based on DNA sequence analysis were conducted. First, a phylogenetic tree was reconstructed using 18S ribosomal DNA (rDNA) sequences in order to classify and identify phylogenetic relationships between different species of nematode-trapping fungi. The obtained data was congruent with the trap morphology and it was revealed that the nematode-trapping fungi form a monophyletic clade, i. e. they have a common ancestor. Second, a population study of Duddingtonia flagrans, one of the most promising species for biological control of animal parasitic nematodes, was undertaken. The divergence of isolates from a worldwide collection as well as the mode of reproduction, dispersion and biogeography was investigated by using various DNA markers. The divergence time was estimated to 44000 years ago. Furthermore, it was found that the species has a clonal reproduction. There was no geographic pattern in the distribution of various genotypes, which indicates that D. flagrans has dispersed multiple times. Finally, a comparative transcriptome analysis was started using the nematode-trapping fungus Monacrosporium haptotylum. In total 4767 expressed sequence tags (ESTs) representing 2000 tentatively unique genes were sequenced from three different cDNA libraries: vegetative mycelium, developed traps, and traps infecting the model nematode Caenorhabditis elegans. The patterns of genes expressed in the different growth stages was to a large extent unique, only 7.6% of the sequenced transcripts were detected in more then one cDNA library. To comprehensively analyze the sequences, a web-based bioinformatic tool was developed. The software stores, perform similarity searches against an automatically downloaded protein database (non-redundant, GenBank) and displays the result in images as well as tables. Comparative analyses of annotated sequences indicated a number of differences in metabolic and cellular functions between the vegetative mycelium, knobs and fungus infecting C. elegans

    Applications of genomics to the improvement of nematode pathogenic fungi.

    No full text
    Abstract is not availabl
    corecore